Теорема об изменении момента количества движения. Задачи для самостоятельного решения

Для материальной точки основной закон динамики можно представить в виде

Умножая обе части этого соотношения слева векторно на радиус-вектор (рис. 3.9), получаем

(3.32)

В правой части этой формулы имеем момент силы относительно точки О. Преобразуем левую часть, применив формулу производной векторного произведения

Но как векторное произведение параллельных векторов. После этого получаем

(3.33)

Первая производная по времени момента количества движения точки относительно какого-либо центра равна моменту силы относительно того же центра.


Пример вычисления кинетического момента системы. Вычислить кинетический момент относительно точки О системы, состоящей из цилиндрического вала массой М = 20 кг и радиусом R = 0.5м и спускающегося груза массой m = 60 кг (рисунок 3.12). Вал вращается вокруг оси Oz с угловой скоростью ω = 10 с -1 .

Рисунок 3.12

; ;

При заданных входных данных кинетический момент системы

Теорема об изменении кинетического момента системы. К каждой точке системы приложим равнодействующие внешних и внутренних сил. Для каждой точке системы можно применить теорему об изменении момента количества движения, например в форме (3.33)

Суммируя по всем точкам системы и учитывая, что сумма производных равна производной от суммы, получим

По определению кинетического момента системы и свойству внешних и внутренних сил

поэтому полученное соотношение можно представить в виде

Первая производная по времени кинетического момента системы относительно какой-либо точки равна главному моменту внешних сил, действующих на систему, относительно той же точки.

3.3.5. Работа силы

1) Элементарная работа силы равна скалярному произведению силы на дифференциал радиус вектора точки приложения силы (рис. 3.13)

Рисунок 3.13

Выражение (3.36) можно записать также в следующих эквивалентных формах

где - проекция силы на направление скорости точки приложения силы.

2) Работа силы на конечном перемещении

Интегрируя элементарную работу силы, получим следующие выражения для работы силы на конечном перемещении из точки А в точку В

3) Работа постоянной силы

Если сила постоянна, то из (3.38) следует

Работа постоянной силы не зависит от формы траектории, а зависит только от вектора перемещения точки приложения силы .

4) Работа силы веса

Для силы веса (рис. 3.14) и из (3.39) получим

Рисунок 3.14

Если движение происходит из точки В в точку А, то

В общем случае

Знак «+» соответствует движению точки приложения силы «вниз», знак «-» - вверх.

4) Работа силы упругости

Пусть ось пружины направлена по оси x (рис.3.15), а конец пружины перемещается из точки 1 в точку 2, тогда из (3.38) получим

Если жесткость пружины равна с , то , тогда

А (3.41)

Если конец пружины перемещается из точки 0 в точку 1, то в этом выражении заменяем , , тогда работа силы упругости примет вид

(3.42)

где - удлинение пружины.

Рисунок 3.15

5) Работа силы приложенной к вращающемуся телу. Работа момента.

На рис. 3.16 показано вращающееся тело, к которому приложена произвольная сила . При вращении точка приложения этой силы движется по окружности.

Общие теоремы динамики системы тел. Теоремы о движении центра масс, об изменении количества движения, об изменении главного момента количества движения, об изменении кинетической энергии. Принципы Даламбера, и возможных перемещений. Общее уравнение динамики. Уравнения Лагранжа.

Содержание

Работа, которую совершает сила , равна скалярному произведению векторов силы и бесконечно малому перемещению точки ее приложения :
,
то есть произведению модулей векторов F и ds на косинус угла между ними.

Работа, которую совершает момент сил , равна скалярному произведению векторов момента и бесконечно малого угла поворота :
.

Принцип Даламбера

Суть принципа Даламбера состоит в том, чтобы задачи динамики свести к задачам статики. Для этого предполагают (или это заранее известно), что тела системы имеют определенные (угловые) ускорения. Далее вводят силы инерции и (или) моменты сил инерции, которые равны по величине и обратные по направлению силам и моментам сил, которые по законам механики создавали бы заданные ускорения или угловые ускорения

Рассмотрим пример. Путь тело совершает поступательное движение и на него действуют внешние силы . Далее мы предполагаем, что эти силы создают ускорение центра масс системы . По теореме о движении центра масс, центр масс тела имел бы такое же ускорение, если бы на тело действовала сила . Далее мы вводим силу инерции:
.
После этого задача динамики:
.
;
.

Для вращательного движения поступают аналогичным образом. Пусть тело вращается вокруг оси z и на него действуют внешние моменты сил M e zk . Мы предполагаем, что эти моменты создают угловое ускорение ε z . Далее мы вводим момент сил инерции M И = - J z ε z . После этого задача динамики:
.
Превращается в задачу статики:
;
.

Принцип возможных перемещений

Принцип возможных перемещений применяется для решений задач статики. В некоторых задачах, он дает более короткое решение, чем составление уравнений равновесия. Особенно это касается систем со связями (например, системы тел, соединенные нитями и блоками), состоящих из множества тел

Принцип возможных перемещений .
Для равновесия механической системы с идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех действующих на нее активных сил при любом возможном перемещении системы была равна нулю.

Возможное перемещение системы - это малое перемещение, при котором не нарушаются связи, наложенные на систему.

Идеальные связи - это связи, которые не совершают работы при перемещении системы. Точнее, сумма работ, совершаемая самими связями при перемещении системы равна нулю.

Общее уравнение динамики (принцип Даламбера - Лагранжа)

Принцип Даламбера - Лагранжа - это объединение принцип Даламбера с принципом возможных перемещений. То есть, при решении задачи динамики, мы вводим силы инерции и сводим задачу к задаче статики, которую решаем с помощью принципа возможных перемещений.

Принцип Даламбера - Лагранжа .
При движении механической системы с идеальными связями в каждый момент времени сумма элементарных работ всех приложенных активных сил и всех сил инерции на любом возможном перемещении системы равна нулю:
.
Это уравнение называют общим уравнением динамики .

Уравнения Лагранжа

Обобщенные координаты q 1 , q 2 , ..., q n - это совокупность n величин, которые однозначно определяют положение системы.

Число обобщенных координат n совпадает с числом степеней свободы системы.

Обобщенные скорости - это производные от обобщенных координат по времени t .

Обобщенные силы Q 1 , Q 2 , ..., Q n .
Рассмотрим возможное перемещение системы, при котором координата q k получит перемещение δq k . Остальные координаты остаются неизменными. Пусть δA k - это работа, совершаемая внешними силами при таком перемещении. Тогда
δA k = Q k δq k , или
.

Если, при возможном перемещении системы, изменяются все координаты, то работа, совершаемая внешними силами при таком перемещении, имеет вид:
δA = Q 1 δq 1 + Q 2 δq 2 + ... + Q n δq n .
Тогда обобщенные силы являются частными производными от работы по перемещениям:
.

Для потенциальных сил с потенциалом Π ,
.

Уравнения Лагранжа - это уравнения движения механической системы в обобщенных координатах:

Здесь T - кинетическая энергия. Она является функцией от обобщенных координат, скоростей и, возможно, времени. Поэтому ее частная производная также является функцией от обобщенных координат, скоростей и времени. Далее нужно учесть, что координаты и скорости являются функциями от времени. Поэтому для нахождения полной производной по времени нужно применить правило дифференцирования сложной функции:
.

Использованная литература:
С. М. Тарг, Краткий курс теоретической механики, «Высшая школа», 2010.

Направление и величина момента количества движенияопределяется точно так же, как в случае оценки момента силы (параграф 1.2.2).

Одновременно определим (главный) момент количества движения как векторную сумму моментов количества движений точек рассматриваемой системы . Он имеет и второе название – кинетический момент :

Найдем производную по времени выражения (3.40), используя правила дифференцирования произведения двух функций, а также то, что производная суммы равна сумме производных (т.е. знак суммы при дифференцировании можно перемещать как коэффициент):

.

Учтем очевидные кинематические равенства: . Тогда: . Используем среднее уравнение из формул (3.26) , а также то, что векторное произведение двух коллинеарных векторов ( и ) равно нулю, получим:

Применяя ко 2-му слагаемому свойство внутренних сил (3.36), получим выражение для теоремы об изменении главного момента количества движения механической системы:

. (3.42)

Производная по времени от кинетического момента равна сумме моментов всех действующих в системе внешних сил .

Эту формулировку часто называют кратко: теорема моментов .

Необходимо заметить, что теорема моментов формулируется в неподвижной системе отсчета относительно некого неподвижного центра О. Если в качестве механической системы рассматривается твердое тело, то удобно выбрать центр О на оси вращения тела.

Следует отметить одно важное свойство теоремы моментов (приведем его без вывода). Теорема моментов выполняется и в движущейся поступательно системе отсчета, если в качестве ее центра выбран центр масс (т. С) тела (механической системы):

Формулировка теоремы в этом случае практически сохраняется.

Следствие 1

Пусть правая часть выражения (3.42) равна нулю =0, - система изолирована. Тогда из уравнения (3.42) следует, что .

Для изолированной механической системы вектор кинетического момента системы со временем не меняется ни направлению, ни по величине .

Следствие 2

При равенстве нулю правой части какого либо из выражений (3.44), например, для оси Oz: =0 (частично изолированная система), то из уравнений (3.44) следует: =const.

Следовательно, если сумма моментов внешних сил относительно какой либо оси равна нулю, то осевой кинетический момент системы по этой оси со временем не меняется .

Приведенные выше в следствиях формулировки есть выражения закона сохранение момента количества движения в изолированных системах .

Кинетический момент твердого тела

Рассмотрим частный случай – вращение твердого тела вокруг оси Oz (рис.3.4).

Рис.3.4

Точка тела, отстоящая от оси вращения на расстояние h k , вращается в плоскости, параллельной Oxy со скоростью . В соответствии с определением осевого момента используем выражение (1.19), заменив проекцию F XY силы на эту плоскость количеством движения точки . Оценим осевой кинетический момент тела:

По теореме Пифагора , поэтому (3.46) можно записать так:

(3.47)

Тогда выражение (3.45) приобретет вид:

(3.48)

Если воспользоваться законом сохранения кинетического момента для частично изолированной системы (следствие 2) применительно к твердому телу (3.48), получим . В этом случае можно рассмотреть два варианта:

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

1. Как определяется кинетический момент вращающегося твердого тела?

2. Чем отличается осевой момент инерции от осевого кинетического момента?

3. Как меняется со временем скорость вращения твердого тела при отсутствии внешних сил?

Осевой момент инерции твердого тела

Как мы убедимся впоследствии, осевой момент инерции тела имеет для вращательного движения тела такое же значение, как масса тела при его поступательном движении. Эта одна из важнейших характеристик тела, определяющая инерцию тела при его вращении. Как видно из определения (3.45), эта положительная скалярная величина, которая зависит от масс точек системы, но в большей мере от удаленности точек от оси вращения.

Для сплошных однородных тел простых форм величину осевого момента инерции, как и в случае оценки положения центра масс(3.8), считают методом интегрирования, используя вместо дискретной массы массу элементарного объема dm=ρdV:

(3.49)

Приведем для справки значения моментов инерции для некоторых простых тел:

m и длиной l относительно оси, проходящей перпендикулярно стержню через его середину (рис.3.5).

Рис.3.5

· Момент инерции тонкого однородного стержня массой m и длиной l относительно оси, проходящей перпендикулярно стержню через его торец (рис.3.6).

Рис.3.6

· Момент инерции тонкого однородного кольца массой m и радиусом R относительно оси, проходящей через его центр перпендикулярно плоскости кольца (рис.3.7).

Рис.3.7

· Момент инерции тонкого однородного диска массой m и радиусом R относительно оси, проходящей через его центр перпендикулярно плоскости диска (рис.3.7).

Рис.3.8

· Момент инерции тела произвольной формы.

Для тел произвольной формы момент инерции пишут в такой форме:

где ρ – т.н. радиус инерции тела, или радиус некого условного кольца массой m , осевой момент инерции которого равен моменту инерции данного тела.

Теорема Гюйгенса – Штейнера

Рис.3.9

Свяжем с телом две параллельные системы координат. Первая Cx"y"z", с началом координат в центре масс, называется центральной, и вторая Oxyz, с центром О, лежащей на оси Cx" на расстоянии СО = d (рис.3.9). Легко установить связи координат точек тела у этих систем:

В соответствии с формулой (3.47), момент инерции тела относительно оси Oz:

Здесь постоянные для всех членов 2-й и 3-й сумм правой части сомножители 2d и d вынесены из соответствующих сумм. Сумма масс в третьем слагаемом – это масса тела . Вторая сумма, в соответствии с (3.7), определяет координату центра масс С на оси Cx" (), причем очевидно равенство: . Учтя, что 1-е слагаемое, по определению, является моментом инерции тела относительно центральной оси Cz" (или Z C) , получим формулировку теоремы Гюйгенса - Штейнера:

(3.50)

Момент инерции тела относительно некой оси равен сумме момента инерции тела относительно параллельной центральной оси и произведения массы тела на квадрат расстояния между этими осями .

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

1. Приведите формулы для осевых моментов инерции стержня, кольца, диска.

2. Найдите радиус инерции круглого сплошного цилиндра относительно его центральной оси.

Сначала рассмотрим случай одной материальной точки. Пусть - масса материальной точки М, - ее скорость, - количество движения.

Выберем в окружающем пространстве точку О и построим момент вектора относительно этой точки по тем же правилам, по которым в статике вычисляется момент силы. Получим векторную величину

которая называется моментом количества движения материальной точки относительно центра О (рис. 31).

Построим с началом в центре О декартову прямоугольную систему координат Oxyz и спроектируем вектор ко на эти оси. Его проекции на эти оси, равные моментам вектора относительно соответствующих координатных осей, называются моментами количества движения материальной точки относительно координатных осей:

Пусть теперь имеем механическую систему, состоящую из N материальных точек . В этом случае момент количества движения можно определить для каждой точки системы:

Геометрическая сумма моментов количеств движения всех материальных точек, входящих в состав системы, называется главным моментом количеств движения или кинетическим моментом системы.

Теорема об изменении количества движения системы

Понятие импульса силы позволяет сформулировать теорему об изменении количества движения системы для произвольных систем:

где - начальный, а - конечный импульс изолированной системы, взаимодействующей с другими системами лишь посредством сил. Фактически, в этой формулировке закон сохранения импульса эквивалентен второму закону Ньютона и является его интегралом по времени, так как

Теорема об изменении момента количества движения (кинетического момента) материальной точки

Рассмотрим материальную точку M массой m , движущуюся под действием силы F (рисунок 3.1). Запишем и построим вектор момента количества движения (кинетического момента) M 0 материальной точки относительно центра O :

Рисунок 3.1

Дифференцируем выражение момента количества движения (кинетического моментаk 0) по времени:

Так как dr /dt = V , то векторное произведение V m⋅V (коллинеарных векторов V и m⋅V ) равно нулю. В то же время d(m⋅V) /dt = F согласно теореме о количестве движения материальной точки. Поэтому получаем, что

dk 0 /dt = r F , (3.3)

где r F = M 0 (F ) – вектор-момент силы F относительно неподвижного центра O . Вектор k 0 ⊥ плоскости (r ,m V ), а вектор M 0 (F ) ⊥ плоскости (r ,F ), окончательно имеем

dk 0 /dt = M 0 (F ) . (3.4)

Уравнение (3.4) выражает теорему об изменении момента количества движения (кинетического момента) материальной точки относительно центра : производная по времени от момента количества движения (кинетического момента) материальной точки относительно какого-либо неподвижного центра равна моменту действующей на точку силы относительно того же центра.

Проецируя равенство (3.4) на оси декартовых координат, получаем

dk x /dt = M x (F ); dk y /dt = M y (F ); dk z /dt = M z (F ) . (3.5)

Равенства (3.5) выражают теорему об изменении момента количества движения (кинетического момента) материальной точки относительно оси: производная по времени от момента количества движения (кинетического момента) материальной точки относительно какой-либо неподвижной оси равна моменту действующей на эту точку силы относительно той же оси.

Рассмотрим следствия, вытекающие из теорем (3.4) и (3.5).

Следствие 1. Рассмотрим случай, когда сила F во все время движения точки проходит через неподвижный центр O (случай центральной силы), т.е. когда M 0 (F ) = 0. Тогда из теоремы (3.4) следует, что k 0 = const ,

т.е. в случае центральной силы момент количества движения (кинетический момент) материальной точки относительно центра этой силы остается постоянным по модулю и направлению (рисунок 3.2).


Рисунок 3.2

Из условия k 0 = const следует, что траектория движущейся точки представляет собой плоскую кривую, плоскость которой проходит через центр этой силы.

Следствие 2. Пусть M z (F ) = 0, т.е. сила пересекает ось z или ей параллельна. В этом случае, как это видно из третьего из уравнений (3.5), k z = const ,

т.е. если момент действующей на точку силы относительно какой-либо неподвижной оси всегда равен нулю, то момент количества движения (кинетический момент) точки относительно этой оси остается постоянным.

error: Content is protected !!