История развития компьютерной техники статьи. История развития компьютерной техники. · Эксплуатация: несколько изменилась. Более оперативно производится ремонт стандартных неисправностей, но из-за большой сложности системной организации требуется штат выс

Как только человек открыл для себя понятие "количество", он сразу же принялся подбирать инструменты, оптимизирующие и облегчающие счёт. Сегодня сверхмощные компьютеры, основываясь на принципах математических вычислений, обрабатывают, хранят и передают информацию - важнейший ресурс и двигатель прогресса человечества. Нетрудно составить представление о том, как происходило развитие вычислительной техники, кратко рассмотрев основные этапы этого процесса.

Основные этапы развития вычислительной техники

Самая популярная классификация предлагает выделить основные этапы развития вычислительной техники по хронологическому принципу:

  • Ручной этап. Он начался на заре человеческой эпохи и продолжался до середины XVII столетия. В этот период возникли основы счёта. Позднее, с формированием позиционных систем счисления, появились приспособления (счёты, абак, позднее - логарифмическая линейка), делающие возможными вычисления по разрядам.
  • Механический этап. Начался в середине XVII и длился почти до конца XIX столетия. Уровень развития науки в этот период сделал возможным создание механических устройств, выполняющих основные арифметические действия и автоматически запоминающих старшие разряды.
  • Электромеханический этап - самый короткий из всех, какие объединяет история развития вычислительной техники. Он длился всего около 60 лет. Это промежуток между изобретением в 1887 году первого табулятора до 1946 года, когда возникла самая первая ЭВМ (ENIAC). Новые машины, действие которых основывалось на электроприводе и электрическом реле, позволяли производить вычисления со значительно большей скоростью и точностью, однако процессом счёта по-прежнему должен был управлять человек.
  • Электронный этап начался во второй половине прошлого столетия и продолжается в наши дни. Это история шести поколений электронно-вычислительных машин - от самых первых гигантских агрегатов, в основе которых лежали электронные лампы, и до сверхмощных современных суперкомпьютеров с огромным числом параллельно работающих процессоров, способных одновременно выполнить множество команд.

Этапы развития вычислительной техники разделены по хронологическому принципу достаточно условно. В то время, когда использовались одни типы ЭВМ, активно создавались предпосылки для появления следующих.

Самые первые приспособления для счёта

Наиболее ранний инструмент для счёта, который знает история развития вычислительной техники, - десять пальцев на руках человека. Результаты счёта первоначально фиксировались при помощи пальцев, зарубок на дереве и камне, специальных палочек, узелков.

С возникновением письменности появлялись и развивались различные способы записи чисел, были изобретены позиционные системы счисления (десятичная - в Индии, шестидесятиричная - в Вавилоне).

Примерно с IV века до нашей эры древние греки стали вести счёт при помощи абака. Первоначально это была глиняная плоская дощечка с нанесёнными на неё острым предметом полосками. Счёт осуществлялся путём размещения на этих полосах в определённом порядке мелких камней или других небольших предметов.

В Китае в IV столетии нашей эры появились семикосточковые счёты - суанпан (суаньпань). На прямоугольную деревянную раму натягивались проволочки или верёвки - от девяти и более. Ещё одна проволочка (верёвка), натянутая перпендикулярно остальным, разделяла суанпан на две неравные части. В большем отделении, именуемом "землёй", на проволочки было нанизано по пять косточек, в меньшем - "небе" - их было по две. Каждая из проволочек соответствовала десятичному разряду.

Традиционные счёты соробан стали популярными в Японии с XVI века, попав туда из Китая. В это же время счёты появились и в России.

В XVII столетии на основании логарифмов, открытых шотландским математиком Джоном Непером, англичанин Эдмонд Гантер изобрёл логарифмическую линейку. Это устройство постоянно совершенствовалось и дожило до наших дней. Оно позволяет умножать и делить числа, возводить в степень, определять логарифмы и тригонометрические функции.

Логарифмическая линейка стала прибором, завершающим развитие средств вычислительной техники на ручном (домеханическом) этапе.

Первые механические счётные устройства

В 1623 году немецким учёным Вильгельмом Шиккардом был создан первый механический "калькулятор", который он назвал считающими часами. Механизм этого прибора напоминал обычный часовой, состоящий из шестерёнок и звёздочек. Однако известно об этом изобретении стало только в середине прошлого столетия.

Качественным скачком в области технологии вычислительной техники стало изобретение суммирующей машины "Паскалины" в 1642 году. Её создатель, французский математик Блез Паскаль, начал работу над этим устройством, когда ему не было и 20 лет. "Паскалина" представляла собой механический прибор в виде ящичка с большим количеством взаимосвязанных шестерёнок. Числа, которые требовалось сложить, вводились в машину поворотами специальных колёсиков.

В 1673 году саксонский математик и философ Готфрид фон Лейбниц изобрёл машину, выполнявшую четыре основных математических действия и умевшую извлекать квадратный корень. Принцип её работы был основан на двоичной системе счисления, специально придуманной учёным.

В 1818 году француз Шарль (Карл) Ксавье Тома де Кольмар, взяв за основу идеи Лейбница, изобрёл арифмометр, умеющий умножать и делить. А ещё спустя два года англичанин Чарльз Бэббидж приступил к конструированию машины, которая способна была бы производить вычисления с точностью до 20 знаков после запятой. Этот проект так и остался неоконченным, однако в 1830 году его автор разработал другой - аналитическую машину для выполнения точных научных и технических расчётов. Управлять машиной предполагалось программным путём, а для ввода и вывода информации должны были использоваться перфорированные карты с разным расположением отверстий. Проект Бэббиджа предугадал развитие электронно-вычислительной техники и задачи, которые смогут быть решены с её помощью.

Примечательно, что слава первого в мире программиста принадлежит женщине - леди Аде Лавлейс (в девичестве Байрон). Именно она создала первые программы для вычислительной машины Бэббиджа. Её именем впоследствии был назван один из компьютерных языков.

Разработка первых аналогов компьютера

В 1887 году история развития вычислительной техники вышла на новый этап. Американскому инженеру Герману Голлериту (Холлериту) удалось сконструировать первую электромеханическую вычислительную машину - табулятор. В её механизме имелось реле, а также счётчики и особый сортировочный ящик. Прибор считывал и сортировал статистические записи, сделанные на перфокартах. В дальнейшем компания, основанная Голлеритом, стала костяком всемирно известного компьютерного гиганта IBM.

В 1930 году американец Ванновар Буш создал дифференциальный анализатор. В действие его приводило электричество, а для хранения данных использовались электронные лампы. Эта машина способна была быстро находить решения сложных математических задач.

Ещё через шесть лет английским учёным Аланом Тьюрингом была разработана концепция машины, ставшая теоретической основой для нынешних компьютеров. Она обладала всеми главными свойствами современного средства вычислительной техники: могла пошагово выполнять операции, которые были запрограммированы во внутренней памяти.

Спустя год после этого Джордж Стибиц, учёный из США, изобрёл первое в стране электромеханическое устройство, способное выполнять двоичное сложение. Его действия основывались на булевой алгебре - математической логике, созданной в середине XIX века Джорджем Булем: использовании логических операторов И, ИЛИ и НЕ. Позднее двоичный сумматор станет неотъемлемой частью цифровой ЭВМ.

В 1938 году сотрудник университета в Массачусетсе Клод Шеннон изложил принципы логического устройства вычислительной машины, применяющей электрические схемы для решения задач булевой алгебры.

Начало компьютерной эры

Правительства стран, участвующих во Второй мировой войне, осознавали стратегическую роль вычислительных машин в ведении военных действий. Это послужило толчком к разработкам и параллельному возникновению в этих странах первого поколения компьютеров.

Пионером в области компьютеростроения стал Конрад Цузе - немецкий инженер. В 1941 году им был создан первый вычислительный автомат, управляемый при помощи программы. Машина, названная Z3, была построена на телефонных реле, программы для неё кодировались на перфорированной ленте. Этот аппарат умел работать в двоичной системе, а также оперировать числами с плавающей запятой.

Первым действительно работающим программируемым компьютером официально признана следующая модель машины Цузе - Z4. Он также вошёл в историю как создатель первого высокоуровневого языка программирования, получившего название "Планкалкюль".

В 1942 году американские исследователи Джон Атанасов (Атанасофф) и Клиффорд Берри создали вычислительное устройство, работавшее на вакуумных трубках. Машина также использовла двоичный код, могла выполнять ряд логических операций.

В 1943 году в английской правительственной лаборатории, в обстановке секретности, была построена первая ЭВМ, получившая название "Колосс". В ней вместо электромеханических реле использовалось 2 тыс. электронных ламп для хранения и обработки информации. Она предназначалась для взлома и расшифровки кода секретных сообщений, передаваемых немецкой шифровальной машиной "Энигма", которая широко применялась вермахтом. Существование этого аппарата ещё долгое время держалось в строжайшей тайне. После окончания войны приказ о его уничтожении был подписан лично Уинстоном Черчиллем.

Разработка архитектуры

В 1945 году американским математиком венгерско-немецкого происхождения Джоном (Яношем Лайошем) фон Нейманом был создан прообраз архитектуры современных компьютеров. Он предложил записывать программу в виде кода непосредственно в память машины, подразумевая совместное хранение в памяти компьютера программ и данных.

Архитектура фон Неймана легла в основу создаваемого в то время в Соединённых Штатах первого универсального электронного компьютера - ENIAC. Этот гигант весил около 30 тонн и располагался на 170 квадратных метрах площади. В работе машины были задействованы 18 тыс. ламп. Этот компьютер мог произвести 300 операций умножения или 5 тыс. сложения за одну секунду.

Первая в Европе универсальная программируемая ЭВМ была создана в 1950 году в Советском Союзе (Украина). Группа киевских учёных, возглавляемая Сергеем Алексеевичем Лебедевым, сконструировала малую электронную счётную машину (МЭСМ). Её быстродействие составляло 50 операций в секунду, она содержала около 6 тыс. электровакуумных ламп.

В 1952 году отечественная вычислительная техника пополнилась БЭСМ - большой электронной счётной машиной, также разработанной под руководством Лебедева. Эта ЭВМ, выполнявшая в секунду до 10 тыс. операций, была на тот момент самой быстродействующей в Европе. Ввод информации в память машины происходил при помощи перфоленты, выводились данные посредством фотопечати.

В этот же период в СССР выпускалась серия больших ЭВМ под общим названием "Стрела" (автор разработки - Юрий Яковлевич Базилевский). С 1954 года в Пензе началось серийное производство универсальной ЭВМ "Урал" под руководством Башира Рамеева. Последние модели были аппаратно и программно совместимы друг с другом, имелся широкий выбор периферических устройств, позволяющий собирать машины различной комплектации.

Транзисторы. Выпуск первых серийных компьютеров

Однако лампы очень быстро выходили из строя, весьма затрудняя работу с машиной. Транзистор, изобретённый в 1947 году, сумел решить эту проблему. Используя электрические свойства полупроводников, он выполнял те же задачи, что и электронные лампы, однако занимал значительно меньший объём и расходовал не так много энергии. Наряду с появлением ферритовых сердечников для организации памяти компьютеров, использование транзисторов дало возможность заметно уменьшить размеры машин, сделать их ещё надёжнее и быстрее.

В 1954 году американская фирма "Техас Инструментс" начала серийно производить транзисторы, а два года спустя в Массачусетсе появился первый построенный на транзисторах компьютер второго поколения - ТХ-О.

В середине прошлого столетия значительная часть государственных организаций и крупных компаний использовала компьютеры для научных, финансовых, инженерных расчётов, работы с большими массивами данных. Постепенно ЭВМ приобретали знакомые нам сегодня черты. В этот период появились графопостроители, принтеры, носители информации на магнитных дисках и ленте.

Активное использование вычислительной техники привело к расширению областей её применения и потребовало создания новых программных технологий. Появились языки программирования высокого уровня, позволяющие переносить программы с одной машины на другую и упрощающие процесс написания кода ("Фортран", "Кобол" и другие). Появились особые программы-трансляторы, преобразовывающие код с этих языков в команды, прямо воспринимаемые машиной.

Появление интегральных микросхем

В 1958-1960 годах, благодаря инженерам из Соединённых Штатов Роберту Нойсу и Джеку Килби, мир узнал о существовании интегральных микросхем. На основе из кремниевого или германиевого кристалла монтировались миниатюрные транзисторы и другие компоненты, порой до сотни и тысячи. Микросхемы размером чуть более сантиметра работали гораздо быстрее, чем транзисторы, и потребляли намного меньше энергии. С их появлением история развития вычислительной техники связывает возникновение третьего поколения ЭВМ.

В 1964 году фирмой IBM был выпущен первый компьютер семейства SYSTEM 360, в основу которого легли интегральные микросхемы. С этого времени можно вести отсчёт массового выпуска ЭВМ. Всего было произведено более 20 тыс. экземпляров данного компьютера.

В 1972 году в СССР была разработана ЕС (единая серия) ЭВМ. Это были стандартизированные комплексы для работы вычислительных центров, имевшие общую систему команд. За основу была взята американская система IBM 360.

В следующем году компания DEC выпустила мини-компьютер PDP-8, ставший первым коммерческим проектом в этой области. Относительно низкая стоимость мини-компьютеров дала возможность использовать их и небольшим организациям.

В этот же период постоянно совершенствовалось программное обеспечение. Разрабатывались операционные системы, ориентированные на то, чтобы поддерживать максимальное количество внешних устройств, появлялись новые программы. В 1964 году разработали Бейсик - язык, предназначенный специально для подготовки начинающих программистов. Через пять лет после этого возник Паскаль, оказавшийся очень удобным для решения множества прикладных задач.

Персональные компьютеры

После 1970 года начался выпуск четвёртого поколения ЭВМ. Развитие вычислительной техники в это время характеризуется внедрением в производство компьютеров больших интегральных схем. Такие машины теперь могли совершать за одну секунду тысячи миллионов вычислительных операций, а ёмкость их ОЗУ увеличилась до 500 миллионов двоичных разрядов. Существенное снижение себестоимости микрокомпьютеров привело к тому, что возможность их купить постепенно появилась у обычного человека.

Одним из первых производителей персональных компьютеров стала компания Apple. Создавшие её Стив Джобс и Стив Возняк сконструировали первую модель ПК в 1976 году, дав ей название Apple I. Стоимость его составила всего 500 долларов. Через год была представлена следующая модель этой компании - Apple II.

Компьютер этого времени впервые стал похожим на бытовой прибор: помимо компактного размера, он имел изящный дизайн и интерфейс, удобный для пользователя. Распространение персональных компьютеров в конце 1970 годов привело к тому, что спрос на большие ЭВМ заметно упал. Этот факт всерьёз обеспокоил их производителя - компанию IBM, и в 1979 году она выпустила на рынок свой первый ПК.

Два года спустя появился первый микрокомпьютер этой фирмы с открытой архитектурой, основанный на 16-разрядном микропроцессоре 8088, производимом компанией "Интел". Компьютер комплектовался монохромным дисплеем, двумя дисководами для пятидюймовых дискет, оперативной памятью объемом 64 килобайта. По поручению компании-создателя фирма "Майкрософт" специально разработала операционную систему для этой машины. На рынке появились многочисленные клоны IBM PC, что подтолкнуло рост промышленного производства персональных ЭВМ.

В 1984 году компанией Apple был разработан и выпущен новый компьютер - Macintosh. Его операционная система была исключительно удобной для пользователя: представляла команды в виде графических изображений и позволяла вводить их с помощью манипулятора - мыши. Это сделало компьютер ещё более доступным, поскольку теперь от пользователя не требовалось никаких специальных навыков.

ЭВМ пятого поколения вычислительной техники некоторые источники датируют 1992-2013 годами. Вкратце их основная концепция формулируется так: это компьютеры, созданные на основе сверхсложных микропроцессоров, имеющие параллельно-векторную структуру, которая делает возможным одновременное выполнение десятков последовательных команд, заложенных в программу. Машины с несколькими сотнями процессоров, работающих параллельно, позволяют ещё более точно и быстро обрабатывать данные, а также создавать эффективно работающие сети.

Развитие современной вычислительной техники уже позволяет говорить и о компьютерах шестого поколения. Это электронные и оптоэлектронные ЭВМ, работающие на десятках тысяч микропроцессоров, характеризующиеся массовым параллелизмом и моделирующие архитектуру нейронных биологических систем, что позволяет им успешно распознавать сложные образы.

Последовательно рассмотрев все этапы развития вычислительной техники, следует отметить интересный факт: изобретения, хорошо зарекомендовавшие себя на каждом из них, сохранились до наших дней и с успехом продолжают использоваться.

Классы вычислительной техники

Существуют различные варианты классификации ЭВМ.

Так, по назначению компьютеры делятся:

  • на универсальные - те, которые способны решать самые различные математические, экономические, инженерно-технические, научные и другие задачи;
  • проблемно-ориентированные - решающие задачи более узкого направления, связанные, как правило, с управлением определёнными процессами (регистрация данных, накопление и обработка небольших объёмов информации, выполнение расчётов в соответствии с несложными алгоритмами). Они обладают более ограниченными программными и аппаратными ресурсами, чем первая группа компьютеров;
  • специализированные компьютеры решают, как правило, строго определённые задачи. Они имеют узкоспециализированную структуру и при относительно низкой сложности устройства и управления достаточно надёжны и производительны в своей сфере. Это, к примеру, контроллеры или адаптеры, управляющие рядом устройств, а также программируемые микропроцессоры.

По размерам и производительной мощности современная электронно-вычислительная техника делится:

  • на сверхбольшие (суперкомпьютеры);
  • большие компьютеры;
  • малые компьютеры;
  • сверхмалые (микрокомпьютеры).

Таким образом, мы увидели, что устройства, сначала изобретённые человеком для учёта ресурсов и ценностей, а затем - быстрого и точного проведения сложных расчётов и вычислительных операций, постоянно развивались и совершенствовались.

Основная средняя школа № 73

Тема:

(информатика)

Цель:

1. Познакомить учащихся с историей развития и основными принципами построения вычислительной техники.

2. Провести сравнительную характеристику современных компьютеров со старой вычислительной техникой. Оценить изменения.

Гипотеза:

Если бы человек не совершенствовал научные и интеллектуальные способности не применял их на практике, то время «стояло» бы на месте,

так как не развивалась бы электронная техника.

Актуальность:

На сегодняшний день развивается быстрыми темпами информационная система. В настоящее время развитие науки и техники затрагивает практически все стороны человеческой жизнедеятельности. Оно оказывают глубочайшее воздействие на взаимоотношения человека, общества и природы, на отношения между людьми, на их самосознание.

Действующие ЭВМ из вспомогательного превращаются в фундаментальный, системно детерминирующий фактор. Возросшие требования к управляющим структурам в экономике в современных условиях могут быть удовлетворены только при помощи вычислительных машин и систем.

Применение вычислительных машин в промышленном производстве изменяет роль человека в процессе создания конечного продукта. Возникновение современной индустрии, основанной на крайне сложных технологических процессах сверхскоростных и сверхточных технических устройствах, подвело к черте, за которой традиционные формы участия человека в производстве в силу его физиологической и нейропсихической ограниченности стали просто невозможны.

Задачи:

    Изучит данный материал.

    Сравнить характеристику

Этапы:

    Собрать материал

    Провести отбор информации

    Создание сравнительной информационной характеристики

    Создание презентации

Введение

В данной работе я стремлюсь дать достаточно широкую картину компьютерной революции, включая ее истоки.

Данная тема актуальна. Актуальность подтверждается словами Марвина Минского, который писал: «На протяжении жизни всего лишь одного поколения рядом с человеком вырос странный новый вид: вычислительные и подобные им машины, с которыми, как он обнаружил, ему придется делить мир. Ни история, ни философия, ни здравый смысл не могут подсказать нам, как эти машины повлияют на нашу жизнь в будущем, ибо они работают совсем не так, как машины, созданные в эру промышленной революции».

Таким образом, целью моей работы является просмотреть развитие вычислительной техники с древних времен до настоящего времени.

В связи с этим я рассмотрю следующие вопросы: 1 Истоки современной ЭВМ; 2 Бурное развитие вычислительной техники; 3 Развитие компьютеров с 80-х годов до нашего времени. Появление ПК.

История развития вычислительной техники

История создания средств цифровой вычислительной техники уходит в глубь веков. Она увлекательна и поучительна, с нею связаны имена выдающихся ученых мира.

Основой вычислительных машин доэлектронного периода являются механические принципы суммирования, вычитания и умножения.

Самыми значимыми машинами этого периода являются:

Начало развития технологий принято считать с Блеза Паскаля, который в 1642г. изобрел устройство, механически выполняющее сложение чисел. Его машина предназначалась для работы с 6-8 разрядными числами и могла только складывать и вычитать, а также имела лучший, чем все до этого, способ фиксации результата. Машина Паскаля имела размеры 36 ´ 13 ´ 8 сантиметров, этот небольшой латунный ящичек было удобно носить с собой.

Машина Паскаля (1641-1642 гг.)

Следующего этапного результата добился выдающийся немецкий математик и философ Готфрид Вильгельм Лейбниц, высказавший в 1672 году идею механического умножения без последовательного сложения. Уже через год он представил машину, которая позволяла механически выполнять четыре арифметических действия, в Парижскую академию.

Машина Лейбница требовала для установки специального стола, так как имела внушительные размеры: 100 ´ 30 ´ 20 сантиметров.

Аналитическая машина,

проект которой Ч. Беббидж разработал в 1836-1848 годах, явилась механическим прототипом появившихся спустя столетие ЭВМ. В ней предполагалось иметь те же, что и в ЭВМ, пять основных устройств: арифметическое, памяти, управления, ввода, вывода. Для арифметического устройства Ч. Беббидж использовал зубчатые колеса, подобные тем, что использовались ранее. На них же Ч. Беббидж намеревался построить устройство памяти из 1000 50-разрядных регистров (по 50 колес в каждом!). Программа выполнения вычислений записывалась на перфокартах, на них же записывались исходные данные и результаты вычислений. В число операций, помимо четырех арифметических, была включена операция условного перехода и операции с кодами команд. Автоматическое выполнение программы вычислений обеспечивалось устройством управления. Время сложения двух 50-разрядных десятичных чисел составляло, по расчетам ученого, 1 с., умножения – 1 мин.

Аналитическая машина Бэббриджа (1836-1848 гг) и её создатель.

К сожалению, он не смог довести до конца работу по созданию Аналитической машины – она оказалась слишком сложной для техники того времени. Но заслуга Бэббиджа в том, что он впервые предложил и частично реализовал, идею программно-управляемых вычислений. Именно Аналитическая машина по своей сути явилась прототипом современного компьютера. Эта идея и ее инженерная детализация опередили время на 100 лет!

Чарльз Беббидж

Программы вычислений на машине Беббиджа, составленные дочерью Байрона Адой Августой Лавлейс (1815-1852), поразительно схожи с программами, составленными впоследствии для первых ЭВМ. Эта женщина-математик первая посоветовала Бэббриджу использовать для вычислений двоичную систему вместо десятеричной. Не случайно её назвали первым программистом мира и в честь её назван первый язык программирования «Ада».

Ада Августа Лавлейс

Уроженец Эльзаса Карл Томас, основатель и директор двух парижских страховых обществ в 1818 году сконструировал счетную машину, уделив основное внимание технологичности механизма, и назвал ее арифмометром. Начиная с XIX века, арифмометры получили очень широкое применение. На них выполнялись даже очень сложные расчеты, например, расчеты баллистических таблиц для артиллерийских стрельб. Пожалуй, одно из последних принципиальных изобретений в механической счетной технике было сделано жителем Петербурга Вильгодтом Однером. Построенный Однером в 1890 году арифмометр фактически ничем не отличается от современных подобных ему машин. Почти сразу Однер с компаньоном наладил и выпуск своих арифмометров - по 500 штук в год. К 1914 году в одной только России насчитывалось более 22 тысяч арифмометров Однера. В первой четверти XX века эти арифмометры были единственными математическими машинами, широко применявшимися в различных областях деятельности человека. В СССР эти громко лязгающие во время работы машинки получили прозвище «Железный Феликс». Ими были оснащены практически все конторы.

Арифмометр «Железный феликс» (1890 г.)

2. Электромеханические вычислительные машины

В первые десятилетия XX века конструкторы обратили внимание на возможность применения в счетных устройствах новых элементов – электромагнитных реле. В 1941 году немецкий инженер Конрад Цузе, построил вычислительное устройство, работающее на таких реле.

Его машина Z -3 (Цузе-3) очень напоминает архитектуру современных компьютеров: память и процессор были отдельными устройствами, процессор мог обрабатывать числа с плавающей запятой, преобразовывать десятичные числа в двоичные и наоборот, выполнять арифметические действия и извлекать квадратный корень. Ввод данных осуществлялся при помощи перфоленты, изготовленной приятелем Цузе из кинопленки. Z3 хранила в оперативной памяти целых 64 машинных слова по 22 бита каждое.

Почти одновременно, в 1943 году, американец Говард Эйкен с помощью работ Бэббиджа на основе техники XX века – электромеханических реле – смог построить на одном из предприятий фирмы IBM легендарный гарвардский «Марк-1» (а позднее еще и «Марк-2»). «Марк-1» имел в длину 15 метров и в высоту 2,5 метра, содержал 800 тысяч деталей, располагал 60 регистрами для констант, 72 запоминающими регистрами для сложения, центральным блоком умножения и деления, мог вычислять элементарные трансцендентные функции. Машина работала с 23-значными десятичными числами и выполняла операции сложения за 0,3 секунды, а умножения – за 3 секунды.

Машина Z -3 К.Цузе (1941-43гг)

МАРК-1 Г.Эйкена (1943г)

Примерно в то же время в Англии начала работать первая вычислительная машина на реле, которая использовалась для расшифровки сообщений, передававшихся немецким кодированным передатчиком. К середине XX века потребность в автоматизации вычислений (в том числе для военных нужд – баллистики, криптографии и т.д.) стала настолько велика, что над созданием машин, подобных "Марк-1" и "Марк-2" работало несколько групп исследователей в разных странах.

Работа по созданию первой электронно вычислительной машины была начата, по-видимому, в 1937 году в США профессором Джоном Атанасовым, болгарином по происхождению. Эта машина была специализированной и предназначалась для решения задач математической физики. В ходе разработок Атанасов создал и запатентовал первые электронные устройства, которые впоследствии применялись довольно широко в первых компьютерах. Полностью проект Атанасова не был завершен, однако через три десятка лет в результате судебного разбирательства профессора признали родоначальником электронной вычислительной техники.

Джон Атанасов - родоначальник электронной вычислительной техники.

3.ЭВМ первого поколения.

Новым периодом в развитии вычислительной техники стало использование электронных ламп. Изобретённые Флемингом в 1904 г они постоянно совершенствовались и в 40-ых годах стало возможно их использование в вычислительных машинах.

С изобретением первых ЭВМ появилось и понятие поколения ЭВМ. Любая классификация условна, но большинство специалистов согласилось с тем, что различать поколения следует исходя из той элементной базы, на основе которой строятся машины. Таким образом, первое поколение представляется ламповыми машинами.

Электронные лампы

4.ЭВМ второго поколения .

Элементной базой машин этого поколения были полупроводниковые приборы. Машины предназначались для решения различных трудоемких научно-технических задач, а также для управления технологическими процессами в производстве.

Появление полупроводниковых элементов в электронных схемах существенно увеличило емкость оперативной памяти, надежность и быстродействие ЭВМ. Уменьшились размеры, масса и потребляемая мощность. С появлением машин второго поколения значительно расширилась сфера использования электронной вычислительной техники, главным образом за счет развития программного обеспечения.

5.ЭВМ третьего поколения

Приоритет в изобретении интегральных схем, ставших элементной базой ЭВМ третьего поколения, принадлежит американским ученым Д. Килби и Р. Нойсу, сделавшим это открытие независимо друг от друга. Массовый выпуск интегральных схем начался в 1962 году, а в 1964 начал быстро осуществляться переход от дискретных элементов к интегральным. Упоминавшийся выше ЭНИАК размерами 9 ´ 15 метров в 1971 году мог бы быть собран на пластине в 1,5 квадратных сантиметра. Началось перевоплощение электроники в микроэлектронику. Несмотря на успехи интегральной техники и появление мини-ЭВМ, в 60-х годах продолжали доминировать большие машины. Таким образом, третье поколение компьютеров, зарождаясь внутри второго, постепенно вырастало из него.Машины предназначались для широкого использования в различных областях науки и техники (проведение расчетов, управление производством, подвижными объектами и др.). Благодаря интегральным схемам удалось существенно улучшить технико-эксплуатационные характеристики ЭВМ. Например, машины третьего поколения по сравнению с машинами второго поколения имеют больший объем оперативной памяти, увеличилось быстродействие, повысилась надежность, а потребляемая мощность, занимаемая площадь и масса уменьшились.

6.ЭВМ четвёртого поколения

Начало 70-х годов знаменует переход к компьютерам четвертого поколения – на сверхбольших интегральных схемах (СБИС). Другим признаком ЭВМ нового поколения являются резкие изменения в архитектуре.

Техника четвертого поколения породила качественно новый элемент ЭВМ – микропроцессор. В 1971 году пришли к идее ограничить возможности процессора, заложив в него небольшой набор операций, микропрограммы которых должны быть заранее введены в постоянную память. Оценки показали, что применение постоянного запоминающего устройства в 16 килобит позволит исключить 100 200 обычных интегральных схем. Так возникла идея микропроцессора, который можно реализовать даже на одном кристалле, а программу в его память записать навсегда. В то время в рядовом микропроцессоре уровень интеграции соответствовал плотности, равной примерно 500 транзисторам на один квадратный миллиметр, при этом достигалась очень хорошая надежность.

6.1. Персональные компьютеры

Хотя и персональные компьютеры относятся к ЭВМ 4-го поколения, все же возможность их широкого распространения, несмотря на достижения технологии СБИС, оставалась бы весьма небольшой.

В 1970 году был сделан важный шаг на пути к персональному компьютеру – Маршиан Эдвард Хофф из фирмы Intеl сконструировал интегральную схему, аналогичную по своим функциям центрально­му процессору большого компьютера. Так появился пер­вый микропроцессор I nt еl 4004 , кото­рый был выпущен в продажу в 1971 г. Это был настоя­щий прорыв, ибо микропроцессор Intеl 4004 размером менее 3 см был производительнее гигантских машин 1-го поколения.

В 1972 году появился 8-битный микропроцессор Intel 8008 . Размер его регистров соответствовал стандартной единице цифровой информации – байту. Процессор Intel 8008 являлся простым развитием Intel 4004.

Но в 1974 году был создан гораздо более интересный микропроцессор Intel 8080 . С самого начала разработки он закладывался как 8-битный чип. У него было более широкое множество микрокоманд (множество микрокоманд 8008 было расширено). Кроме того, это был первый микропроцессор, который мог делить числа. И до конца 70-х годов микропроцессор Intel 8008 ста­л стандартом для микрокомпьютерной индустрии.

Сегодня вычислительная техника и ПЭВМ стремительно развиваются и повсеместно входят в нашу жизнь. Развивается микроэлектроника, лазерная электроника, средства хранения и передачи информации, и программное обеспечение. С развитием сети Интернет появилась возможность обмена информацией между компьютерами всего мира.

Удвоение производительности ПЭВМ происходит каждый год и этот показатель постоянно сокращается. Но у полупроводниковых процессоров так же существует предел производительности. Поэтому перспективным считается направление квантовой электроники, основанной на принципах квантовой механики. Возможно, квантовые компьютеры станут в скором времени ЭВМ пятого поколения.

Современный компьютер.

Заключение

В своем выступлении я попыталась рассказать об истории развития компьютерной техники.

В первом разделе работы был сделан подробный анализ о том, что средства вычислительной техники появились достаточно давно, так как потребность различного рода вычислениях и расчетах существовала уже на самых ранних стадиях развития цивилизации.

А математическая наука, одной из важнейших задач, которой была выработка точных правил этих вычислений, по праву относится к числу древнейших наук. Различные устройства, облегчающие и ускоряющие процесс вычислений, изобретались человеком еще в очень отдаленные времена. Так, история возникновения счетов теряется в глубине столетий, аналогичные по значению устройства использовались многими народами.

Во втором разделе говорилось о бурном развитии вычислительной техники, одной из которых была ЭВМ ENIAC .

А в третьем разделе рассказывается о создании первых ПК, миникомпьютеров начиная с 80-года.

Данная теоретическая работа по информатике заслуживает внимание для подробного изучения для учащихся 5-6-7- классов общеобразовательных школ в изучении предмета по информатике.

Кроме того, данную работу об истории развития компьютерной техники в мировом масштабе можно рекомендовать для широкого круга, для тех, кто впервые начинает заниматься изучением для работы компьютерной техники в работе и повседневной жизни.

Список литературы

    М. Гук «Аппаратные средства IBM PC » С-Пб. 1997

    Жигаев А. Н. Основы компьютерной грамоты –Л. Машиностроение. 1987 г – 255 с.

    Богатырев Р.В. На заре компьютеров. // Мир ПК. 2004. - № 4

    Фигурная В. С. . Из истории компьютеров.// Мир ПК. 2005. - № 1

    Шафрин Ю. Основы компьютерной технологии учебное пособие для 7 – 11 классов по курсу «Информатика и вычислительная техника». – Москва.: ABF 1996

Цель, гипотеза, актуальность, задачи этапы изучаемой темы - стр. 2;

Введение - стр. 3;

История развития вычислительной техники - стр. 4;

Электромеханические вычислительные машины - стр. 7;

ЭВМ первого поколения - стр. 9; ЭВМ второго поколения - стр. 10;

ЭВМ третьего поколения - стр. 10;

ЭВМ четвёртого поколения - стр. 11;

Персональные компьютеры - стр. 11;

Заключение - стр. 13;

Список литературы - стр. 15.

История развития компьютерной техники

Наименование параметра Значение
Тема статьи: История развития компьютерной техники
Рубрика (тематическая категория) Компьютеры

Предмет, цели, задачи и структура дисциплины

Тема 1.1. Введение

Раздел 1. Аппаратное обеспечение КОМПЬЮТЕРНой техники

Предмет дисциплины – современные средства компьютерной техники (программные и аппаратные) и основы программирования на персональном компьютере. Важно заметить, что для студентов телœекоммуникационных специальностей аппаратные и программные средства компьютерной техники и их компоненты являются, с одной стороны, элементами телœекоммуникационных устройств, систем и сетей и, с другой стороны, основным рабочим инструментом при их разработке и эксплуатации. Овладение основами программирования на языках высокого уровня, используемыми в программном обеспечении телœекоммуникационных узлов, также является необходимым для подготовки специалиста-разработчика средств телœекоммуникаций.

По этой причине целью данной дисциплины является изучение студентами современной компьютерной техники для ориентации и практического использования, формирование навыков работы с системным и прикладным программным обеспечением, а также овладение основами программирования на алгоритмических языках на персональном компьютере.

Задачи дисциплины:

· ознакомление с историей развития компьютерной техники и программирования;

· изучение основ архитектуры и организации процесса обработки данных в компьютерной системах и сетях;

· обзор базовых компонент компьютерных систем и сетей и их взаимодействия;

· ознакомление с наиболее распространенными типами компьютерных систем и сетей;

· обзор структуры и компонент программного обеспечения компьютерной техники;

· обзор наиболее распространенных в настоящее время операционных систем и сред и базовых пакетов прикладных программ, а также практическая работа с ними;

· изучение основ алгоритмизации задач и средств их программной реализации;

· изучение основ программирования и программирование на алгоритмическом языке C;

· изучение технологии программирования в телœекоммуникационных системах на примере Web-технологий.

Программа курса рассчитана на два семестра.

Для контроля овладения студентами материала курса и в первом и во втором семестре предусмотрены экзамены. Текущий контроль будет проводиться на практических занятиях и лабораторных работах.

Потребность в счете возникла у людей с незапамятных времен. В далеком прошлом они считали на пальцах или делали насечки на костях, на дереве или на камнях.

Первым счетным инструментом, получившим широкое распространение, можно считать абак (от греческого слова abakion и латинского abacus, означающих доска).

Предполагается, что абак впервые появился в Вавилоне примерно в 3 тысячелœетии до нашей эры. Доска абака была разделœена линиями на полосы или желобки, а арифметические действия выполнялись с помощью размещённых на полосах (желобках) камней или других подобных предметов (рис. 1.1.1а). Каждый камешек означал единицу вычислений, а сама линия – разряд этой единицы. В Европе абак использовался до XVIII века.

Рис. 1.1.1. Разновидности абака: древнеримский абак (реконструкция);

б) китайский абак (суанпан); в) японский абак (соробан);

г) абак инков (юпана); д) абак инков (кипу)

В Древнем Китае и Японии использовались аналоги абака – суанпан (рис. 1.1.1б) и соробан (рис. 1.1.1в). Вместо камешков использовались цветные шарики, а вместо желобков – прутики, на которые шарики нанизывались. На аналогичных принципах базировались и абаки инков – юпана (рис. 1.1.1г) и кипу (рис. 1.1.1д). Кипу использовалось не только для счета͵ но для записи текстов.

Недостатком абака было использование недесятичных систем счисления (в греческом, римском, китайском и японском абаке использовалась пятеричная система счисления). Вместе с тем, абак не позволял оперировать с дробями.

Десятеричный абак , или русские счеты , в которых используется десятеричная система счисления и возможность оперировать десятыми и сотыми дробными долями, появился на рубеже XVI и XVII веков (рис. 1.1.2а). От классического абака счеты отличаются увеличением разрядности каждого числового ряда до 10, добавлением рядов (от 2 до 4) для операций с дробями.

Счеты практически без изменений (рис. 1.1.2б) дожили до 80 годов прошлого века, постепенно уступив место электронным калькуляторам.

Рис. 1.1.2. Русские счеты: а) счеты середины XVII века; б) современные счеты

Счеты упрощали выполнение операций сложения и вычитания, однако умножение и делœение выполнить с их помощью было довольно неудобно (с помощью многократного сложения и вычитания). Устройством, облегчающим умножение и делœение чисел, а также некоторые другие расчёты, стала логарифмическая линœейка (рис. 1.1.3а), изобретенная в 1618 году английским математиком и астрономом Эдмундом Гантером (впервые логарифмы были введены в практику после работы шотландца Джона Непера, опубликованной в 1614 ᴦ.).

Затем в логарифмическую линœейку был добавлен движок и бегунок из стекла (а затем плексигласа), имеющий визирную линию (рис. 1.1.3б). Как и счеты, логарифмическая линœейка уступила место электронным калькуляторам.

Рис. 1.1.3. Логарифмическая линœейка: а) линœейка Эдмунда Гантера;

б) одна из последних моделœей линœейки

Первое механическое счетное устройство (калькулятор) было создано в 40-х годах XVII в. выдающимся французским математиком, физиком, писателœем и философом Блезом Паскалем (в его честь назван один из самых распространенных современных языков программирования). Суммирующая машина Паскаля, ʼʼпаскалинаʼʼ (рис. 1.1.4а), представляла собой ящик с многочисленными шестеренками. Другие операции, кроме сложения, выполнялись при помощи довольно неудобной процедуры повторных сложений.

Первая машина, позволявшая легко производить вычитание, умножение и делœение – механический калькулятор, была изобретена в 1673 ᴦ. в Германии Готфридом Вильгельмом Лейбницем (рис. 1.1.4б). В дальнейшем конструкция механического калькулятора видоизменялась и дополнялась учеными и изобретателями различных стран (рис. 1.1.4в). С широким распространением электричества в быту ручное вращение каретки механического калькулятора было заменено в электромеханическом калькуляторе (рис. 1.1.4г) на привод от встроенного в данный калькулятор электродвигателя. И механический и электромеханический калькуляторы дожили практически до наших дней, пока не были вытеснены электронными калькуляторами (рис. 1.1.4д).

Рис. 1.1.4. Калькуляторы: а) суммирующая машина Паскаля (1642 ᴦ.);

б) калькулятор Лейбница (1673 ᴦ.); в) механический калькулятор (30-е годы XX века);

г) электромеханический калькулятор (60-е годы XX века);

д) электронный калькулятор

Из всœех изобретателœей прошлых столетий, внесших тот или иной вклад в развитие вычислительной техники, ближе всœего к созданию компьютера в современном его понимании подошел англичанин Чарльз Бэббидж. В 1822 ᴦ. Бэббидж опубликовал научную статью с описанием машины, способной рассчитывать и печатать большие математические таблицы. В том же году он построил пробную модель своей Разностной машины (рис.1.1.5), состоящую из шестеренок и валиков, вращаемых вручную при помощи специального рычага. На протяжении следующего десятилетия Бэббидж без устали работал над своим изобретением, безуспешно пытаясь практически ее реализовать. При этом, продолжая размышлять на ту же тему, он пришел к идее создания еще более мощной машины, которую он назвал аналитической машиной.

Рис. 1.1.5. Модель разностной машины Бэббиджа (1822 ᴦ.)

Аналитическая машинаБэббиджа в отличие от своей предшественницы должна была не просто решать математические задачи одного определœенного типа, а выполнять разнообразные вычислительные операции в соответствии с инструкциями, задаваемыми оператором. Аналитическая машина должна была иметь такие компоненты, как ʼʼмельницаʼʼ и ʼʼскладʼʼ (по современной терминологии – арифметическое устройство и память), состоящие из механических рычажков и шестеренок. Инструкции, или команды, вводились в Аналитическую машину с помощью перфокарт (листов картона с пробитыми в них отверстиями), впервые использованных в 1804 ᴦ. французским инженеромЖозефом Мари Жаккаром для управления работой ткацких станков (рис. 1.1.6).

Рис. 1.1.6. Ткацкий станок Жаккара (1805 ᴦ.)

Одним из немногих, кто понимал, как работает машина и каковы потенциальные области ее применения, была графиня Лавлейс, урожденная Огаста Ада Байрон, единственный законный ребенок поэта лорда Байрона (в ее честь также назван один из языков программирования – АДА). Графиня отдала всœе свои незаурядные математические и литературные способности осуществлению проекта Бэббиджа.

При этом на базе стальных, медных и деревянных деталей, часовых механизмов, приводимых в действие паровым двигателœем, аналитическую машину нельзя было реализовать, и она так и не была построена. До наших дней сохранились лишь чертежи и рисунки, которые позволили воссоздать модель этой машины (рис. 1.1.7), а также небольшая часть арифметического устройства и печатающее устройство, сконструированное сыном Бэббиджа.

Рис. 1.1.7. Модель аналитической машины Бэббиджа (1834 ᴦ.)

Лишь через 19 лет после смерти Бэббиджа один из принципов, лежащих в базе идеи Аналитической машины, – использование перфокарт – нашел воплощение в действующем устройстве. Это был статистический табулятор (рис. 1.1.8), построенный американцемГерманом Холлеритом с целью ускорить обработку результатов переписи населœения, которая проводилась в США в 1890 ᴦ. После успешного использования табулятора для переписи Холлерит организовал фирму по производству табуляционных машин "Тэбьюлейтинг машин компани" (Tabulating Machine Company). С годами предприятие Холлерита претерпело ряд изменений – слияний и переименований. Последнее такое изменение произошло в 1924 ᴦ., за 5 лет до смерти Холлерита͵ когда он создал фирму ИБМ (IBM, International Business Machines Corporation).

Рис. 1.1.8. Табулятор Холлерита (1890 ᴦ.)

Еще одним фактором, способствовавшим появления современного компьютера, стали работы по двоичной системе счисления. Одним из первых, кто заинтересовался двоичной системой, стал немецкий ученый Готфрид Вильгельм Лейбниц, В своей работе ʼʼИскусство составления комбинацийʼʼ (1666 ᴦ.) он заложил основы формальной двоичной логики. Но основной вклад в исследование двоичной системы счисления внес английский математик-самоучка Джордж Буль. В своей работе под названием ʼʼИсследование законов мышленияʼʼ (1854 ᴦ.) он изобрел своеобразную алгебру – систему обозначений и правил, применимую к всœевозможным объектам, от чисел и букв до предложений (эта алгебра затем была названа в его честь булевой алгеброй). Пользуясь этой системой Буль мог закодировать высказывания – утверждения, истинность или ложность которых требовалось доказать, – с помощью символов своего языка, а затем манипулировать как двоичными числами.

В 1936 ᴦ. выпускник американского университета Клод Шеннон показал, что если построить электрические цепи в соответствии с принципами булевой алгебры, то они могли бы выражать логические отношения, определять истинность утверждений, а также выполнять сложные вычисления и вплотную приблизился к теоретическим основам построения компьютера.

Еще трое исследователœей – двое в США (Джон Атанасофф и Джордж Стибиц) и один в Германии (Конрад Цузе) – развивали одни и те же идеи практически одновременно. Независимо друг от друга они поняли, что булева логика может послужить очень удобной основой для конструирования компьютера. Первая грубая модель счетной машины на электрических схемах была построена Атанасоффым в 1939 ᴦ. В 1937 ᴦ. Джордж Стибиц собрал первую электромеханическую схему, выполняющую операцию двоичного сложения (в наши дни двоичный сумматор по-прежнему остается одним из базовых компонентов любого цифрового компьютера). В 1940 ᴦ. Стибиц вместе с другим сотрудником фирмы, инженером-электриком Сэмюелом Уильямсом, разработал устройство, названное калькулятором комплексных чисел – CNC (Complex Number Calculator) способное производить операции сложения, вычитания, умножения и делœения, а также сложения комплексных чисел (рис. 1.1.9). При демонстрации этого устройства был впервые показан удаленный доступ к вычислительным ресурсам (демонстрация проводилась в Дармутском колледже, а сам калькулятор находился в Нью-Йорке). Связь осуществлялась с использованием телœетайпа по специальным телœефонным линиям.

Рис. 1.1.9. Калькулятор комплексных чисел Стибица и Вильямса (1940 ᴦ.)

Не имея ни малейшего представления о работе Чарльза Бэббиджа и о работах Буля, Конрад Цузе в Берлинœе начал разрабатывать универсальную вычислительную машину, во многом подобную Аналитической машинœе Бэббиджа. В 1938 ᴦ. первый вариант машины, названный Z1, был построен. Данные в машину вводились с клавиатуры, а результат высвечивался на панели с множеством маленьких лампочек. Во втором варианте машины, Z2, ввод данных в машину производился с помощью перфорированной фотопленки. В 1941 году Цузе закончил третью модель своего компьютера – Z3 (рис. 1.1.10). Этот компьютер являлся программно-управляемым устройством, основанным на двоичной системе счисления. Как машина Z3, так и ее преемник Z4 использовались для расчетов, связанных с конструированием самолетов и ракет.

Рис. 1.1.10. Компьютер Z3 (1941 ᴦ.)

Мощный импульс дальнейшему развитию компьютерной теории и техники дала вторая мировая война. Она также способствовала тому, что были собраны воедино разрозненные достижения ученых и изобретателœей, внесших свой вклад в развитие двоичной математики, начиная с Лейбница.

По заказу командования военно-морского флота͵ при финансовой и технической поддержке фирмы IBM, молодой гарвардский математик Говард Эйкен принялся за разработку машины, в основу которой легли непроверенные идеи Бэббиджа и надежная технология XX в. Описания Аналитической машины, оставленного самим Бэббиджем, оказалось более чем достаточно. В качестве переключательных устройств в машинœе Эйкена использовались простые электромеханические релœе (причем использовалась десятичная система счисления); инструкции (программа обработки данных) были записаны на перфоленте, а данные вводились в машину в виде десятичных чисел, закодированных на перфокартах фирмы IBM. Первые испытания машина, названная ʼʼМарк-1ʼʼ , успешно прошла в начале 1943 ᴦ. ʼʼМарк-1ʼʼ, достигавший в длину почти 17 м и в высоту более 2,5 м, содержал около 750 тыс. деталей, соединœенных проводами общей протяженностью около 800 км (рис. 1.1.11). Машину стали использовать для выполнения сложных баллистических расчетов, причем за день она выполняла вычисления, на которые раньше уходило полгода.

Рис. 1.1.11. Программно-управляемый компьютер ʼʼМарк-1ʼʼ (1943 ᴦ.)

Для поиска способов расшифровки секретных немецких кодов британская разведка собрала группу ученых и посœелила их неподалеку от Лондона, в изолированном от остального мира поместье. В этой группе были представители различных специальностей – от инженеров до профессоров литературы. Входил в эту группу и математик Алан Тьюринᴦ. Еще в 1936 ᴦ. в возрасте 24 лет он написал работу, с описанием абстрактного механического устройства – ʼʼуниверсальной машиныʼʼ, которая должна была справляться с любой допустимой, т. е. теоретически разрешимой, задачей – математической или логической. Некоторые идеи Тьюринга были, в конечном счете, воплощены в реальных машинах, построенных группой. Сначала удалось создать несколько дешифраторов на базе электромеханических переключателœей. При этом в конце 1943 ᴦ. были построены гораздо более мощные машины, в которых вместо электромеханических релœе содержалось около 2000 электронных вакуумных ламп. Англичане назвали новую машину ʼʼКолоссʼʼ. Тысячи перехваченных за день неприятельских сообщений вводились в память ʼʼКолоссаʼʼ в виде символов, закодированных на перфоленте (рис. 1.1.12).

Рис. 1.1.12. Машина для расшифровки кодов ʼʼКолоссʼʼ (1943 ᴦ.)

На другом берегу Атлантического океана, в Филадельфии, потребности военного времени способствовали появлению устройства, ĸᴏᴛᴏᴩᴏᴇ по принципам работы и применению было уже ближе к теоретической ʼʼуниверсальной машинœеʼʼ Тьюринга. Машина ʼʼЭниакʼʼ (ENIAC – Electronic Numerical Integrator and Computer – электронный цифровой интегратор и вычислитель), подобно ʼʼМарку-1ʼʼ Говарда Эйкена, также предназначалась для решения задач баллистики. Главным консультантом проекта был Джон У. Мочли, главным конструктором – Дж. Преспер Экерт. Предполагалась, что машина будет содержать 17468 ламп. Такое обилие ламп отчасти объяснялось тем, что ʼʼЭниакʼʼ должен был работать с десятичными числами. В конце 1945ᴦ. ʼʼЭниакʼʼ был наконец собран (рис. 1.1.13).

Рис. 1.1.13. Электронная цифровая машина ʼʼЭниакʼʼ (1946 ᴦ.):

а) общий вид; б) отдельный блок; в) фрагмент пульта управления

Не успел ʼʼЭниакʼʼ вступить в эксплуатацию, как Мочли и Экерт уже работали по заказу военных над новым компьютером. Главным недостатком компьютера ʼʼЭниакʼʼ была аппаратная реализация программ с помощью электронных схем. Следующая модель – машинаʼʼЭдвакʼʼ (рис. 1.1.14а), вступившая в строй в начале 1951 ᴦ., (EDVAC, от Electronic Discrete Automatic Variable Computer – электронный компьютер с дискретными изменениями) – была уже более гибкой. Ее более вместительная внутренняя память содержала не только данные, но и программу в специальных устройствах – заполненных ртутью трубках, называемых ртутными ультразвуковыми линиями задержки (рис. 1.1.14б). Существенно и то, что ʼʼЭдвакʼʼ кодировал данные уже в двоичной системе, что позволило значительно сократить количество электронных ламп.

Рис. 1.1.14. Электронная цифровая машина ʼʼЭдвакʼʼ (1951 ᴦ.):

а) общий вид; б) память на ртутных ультразвуковых линиях задержки

Среди слушателœей курса лекций об электронных компьютерах, проводившихся Мочли и Экертом в процессе реализации проекта ʼʼЭдвакʼʼ, оказался английский исследователь Морис Уилкс. Вернувшись в Кембриджский университет, он в 1949 ᴦ. (на два года раньше, чем оставшиеся члены группы построили машину "Эдвак") завершил сооружение первого в мире компьютера с программами, хранимыми в памяти. Компьютер получил название ʼʼЭдсакʼʼ (EDSAC, от Electronic Delay Storage Automatic Calculator – электронный автоматический калькулятор с памятью на линиях задержки) (рис. 1.1.15).

Рис. 1.1.15. Первый компьютер с программами,

хранимыми в памяти – ʼʼЭдсакʼʼ (1949 ᴦ.)

Эти первые успешные воплощения принципа хранения программы в памяти явились завершающим этапом в серии изобретений, начатых в военное время. Теперь был открыт путь для широкого распространения всœе более быстродействующих компьютеров.

Эпоха массового производства компьютеров началась с выпуска первого английского коммерческого компьютера LEO (Lyons’ Electronic Office), использовавшегося для расчета зарплаты работникам чайных магазинов, принадлежащих фирме ʼʼLyonsʼʼ (рис. 1.1.16а), а также первого американского коммерческого компьютера UNIVAC I (UNIVersal Automatic Computer – универсальный автоматический компьютер) (рис. 1.1.16б). Оба компьютера были выпущены в 1951 ᴦ.

Рис. 1.1.16. Первые коммерческие компьютеры (1951 ᴦ.): а) LEO; б) UNIVAC I

Качественно новый этап в проектировании компьютеров наступил, когда фирма IBM запустила свою известную серию машин – IBM/360 (начало выпуска серии – 1964 год). Шесть машин этой серии имели разную производительность, совместимый набор периферийных устройств (около 40) и были предназначены для решения разных задач, однако были построены по единым принципам, что существенно облегчало модернизацию компьютеров и обмен программами между ними (рис. 1.1.17).

Рис. 1.1.16. Одна из моделœей серии IBM/360 (1965 ᴦ.)

В бывшем СССР к разработке компьютеров (они были названы ЭВМ – электронные вычислительные машины) приступили в конце 40-х годов. В 1950 ᴦ. в Институте электротехники Академии наук УССР в Киеве была испытана первая отечественная ЭВМ на электронных лампах – малая электронная счетная машина (МЭСМ), спроектированная группой ученых и инженеров под руководством академика С. А. Лебедева (рис. 1.1.18а). В 1952 ᴦ. под его руководством была создана большая электронная счетная машина (БЭСМ), которая после модернизации в 1954 ᴦ. имела высокое для того времени быстродействие – 10000 операций/с (рис. 1.18б).

Рис. 1.1.18. Первые компьютеры в СССР: а) МЭСМ (1950 ᴦ.); б) БЭСМ (1954 ᴦ.)

История развития компьютерной техники - понятие и виды. Классификация и особенности категории "История развития компьютерной техники" 2017, 2018.

Компьютеры стали необходимостью. Они везде: в домах, на заводах, в офисах и автомобилях… Мы порой даже не задумываемся, насколько техники многогранна и богата историческими датами. На сегодняшний день различают четыре поколения компьютеров.

Первое поколение представляло собой громоздкие (по нынешним меркам громадные) машины. Если не считать труд немецкого инженера Цузе (а именно он создал первую ЭВМ в 1941 году, но труды были утеряны), то родоначальником нынешних компьютеров является «Марк-1» (1943 г.). Эта машина требовала огромный зал и состояла из 800 км проводов, более 3300 тыс. реле и потребляла для вычислений сотни киловатт электроэнергии. Использовались эти компьютеры для военных расчетов.

Но стоит отметить, что история компьютерной техники поколения I началось не с «Марк I». Дата ее начала зафиксирована в 1946-м году. Тогда работа компьютера стала основываться на электронно-вакуумных лампах. Именно такую конструкцию имел ЭНИАК. По размерам он был практический как первый «Марк», но отличался большей производительностью (более чем в тысячу раз). Машина оказалась интересной, мощной, новаторской, но непрактичной. Для проведения одного расчета требовалось в течение нескольких часов в определенном порядке проводить коммутацию кабелей. Устройство простаивало, а развитие компьютерной техники продолжалось и появилось новое понятие - «элементная база», которая могла обеспечивать функционирование ЭВМ. База компьютеров I поколения состояла из конденсаторов, резисторов и электронно-вакуумных ламп.

История компьютерной техники отечественного производства начинается в 1951 г., благодаря С.А. Лебедеву. Началось все с МЭСМ, которая после доработок стала БЭСМ-2. Немного позже в СССР была создана самая мощная в Европе ЭВМ с именем М-20, которая довольно часто выходила их строя и требовала для обслуживания немалый штат инженеров.

Второе поколение компьютеров началось с изобретения и использования С этого момента история развития компьютерной техники начала набирать совершенно иную скорость движения. База ЭВМ стала основываться на полупроводниковых элементах. Транзистор был в сорок раз производительней электронной лампы, компактней и дешевле. Стало возможным использование печатных плат. В 1965 г. компания Digital Equipment представила компактный (!) компьютер, размеры которого были немногим меньше вместительного холодильника. Называлось это чудо PDP-8 и стоил 20 тыс. американских долларов.

Пока портативный PDP-8 удивляет всех своей производительностью, одновременно берет свое начало развитие компьютеров третьего поколения (конец 1960-х - 70-е года). Это связано с разработкой и испытаниями первой (Джон Килбри 1958 г.). На пластине кремния располагались транзисторы и их соединения. Производительность - от сотен тысяч до миллионов операций в секунду.

В 1968 выходит в свет первая ЭВМ на интегральных схемах - IBM-360. В 1970 г. компания Intel начинает реализацию интегральных схем памяти. С каждым годом производительность деталей увеличивалась не менее чем в два раза, при этом площадь схем либо не изменялась, либо становилась меньше. Это дало старт развитию четвертого поколения компьютеров.

В 1970 г. фирма Intel (Маршиан Эдвард Хофф) конструирует первый аналог большого компьютера. В 1970 г. он выходит в продажу под названием Intel-4004. При размерах 3 см он был производительнее трех ЭВМ «Марк II». Развитие микропроцессоров шло довольно быстро, что позволило создавать практичные которые использовались для набора текстов, вычислений и упрощения бухучета. Благодаря таким людям как С. Джобс и В. Возняк (основатели «Apple Computer») история развития компьютерной техники стала приближать эти устройства к простым пользователям. И теперь обычные люди могли сами наблюдать то, как быстро растет производительность, появляются новые программы и многое другое. К концу 70-х г.г. распространение получило невероятно большой оборот. Благодаря активным действиям и ловким манипуляциям с коммерческими интересами больших корпораций, молодой американец Билл Гейтс с успехом отвоевывает для компании Microsoft право на разработку программного обеспечения. Успешные сделки и своевременное патентование программ, включая Windows, сделали Microsoft на немалый срок признанным лидером в мире ИТ-технологий, устранив главного соперника - компанию Apple.

Четвертое поколение развивается и по сей день. История развития компьютерной техники продолжается. Современные компьютеры отличаются лишь тем, что для обрабатывания информации используется одновременно несколько процессоров.

error: Content is protected !!