Общее и отличия между косвенными, совокупными и совместными измерениями. Виды измерений Прямые или косвенные измерения были

Расчет погрешностей при прямых и косвенных измерениях

Под измерением понимают сравнение измеряемой величины с другой величиной, принятой за единицу измерения . Измерения выполняются опытным путем с помощью специальных технических средств.

Прямыми измерениями называются измерения, результат которых получается непосредственно из опытных данных (например, измерение длины линейкой, времени – секундомером, температуры – термометром). Косвенными измерениями называются измерения, при которых искомое значение величины находят на основании известной зависимости между этой величиной и величинами, значения которых получают в процессе прямых измерений (например, определение скорости по пройденному пути и времени https://pandia.ru/text/78/464/images/image002_23.png" width="65" height="21 src=">).

Всякое измерение, как бы оно тщательно не было выполнено, обязательно сопровождается погрешностью (ошибкой) – отклонением результата измерений от истинного значения измеряемой величины.

Систематические погрешности – это погрешности, величина которых одинакова во всех измерениях, проводящихся одним и тем же методом с помощью одних и тех же измерительных приборов, в одних и тех же условиях. Систематические погрешности происходят:

В результате несовершенства приборов, используемых при измерениях (например, стрелка амперметра может быть отклонена от нулевого деления в отсутствие тока; у коромысла весов могут быть неравные плечи и др.);

В результате недостаточно полной разработки теории метода измерений, т. е. метод измерений содержит в себе источник ошибок (например, возникает ошибка, когда в калориметрических работах не учитывается потеря тепла в окружающую среду или когда взвешивание на аналитических весах производится без учета выталкивающей силы воздуха);

В результате того, что не учитывается изменение условий опыта (например, при долговременном прохождении тока по цепи в результате теплового действия тока меняются электрические параметры цепи).

Систематические погрешности можно исключить, если изучить особенности приборов, полнее разработать теорию опыта и на основе этого вносить поправки в результаты измерений.

Случайные погрешности – это погрешности, величина которых различна даже для измерений, выполненных одинаковым образом. Причины их кроются как в несовершенстве наших органов чувств, так и во многих других обстоятельствах, сопровождающих измерения, и которые нельзя учесть заранее (случайные ошибки возникают, например, если равенство освещенностей полей фотометра устанавливается на глаз; если момент максимального отклонения математического маятника определяется на глаз; при нахождении момента звукового резонанса на слух; при взвешивании на аналитических весах, если колебания пола и стен передаются весам и т. д.).

Случайных погрешностей избежать нельзя. Их возникновение проявляется в том, что при повторении измерений одной и той же величины с одинаковой тщательностью получаются числовые результаты, отличающиеся друг от друга. Поэтому, если при повторении измерений получались одинаковые значения, то это указывает не на отсутствие случайных погрешностей, а на недостаточную чувствительность метода измерений.

Случайные погрешности изменяют результат как в одну, так и в другую сторону от истинного значения, поэтому, чтобы уменьшить влияние случайных ошибок на результат измерений, обычно многократно повторяют измерения и берут среднее арифметическое всех результатов измерений.

Заведомо неверные результаты - промахи возникают вследствие нарушения основных условий измерения, в результате невнимательности или небрежности экспериментатора. Например, при плохом освещении вместо “3” записывают “8”; из-за того, что экспериментатора отвлекают, он может сбиться при подсчете количества колебаний маятника; из-за небрежности или невнимательности он может перепутать массы грузов при определении жесткости пружины и т. д. Внешним признаком промаха является резкое отличие результата по величине от результатов остальных измерений. При обнаружении промаха результат измерения следует сразу отбросить, а само измерение повторить. Выявлению промахов способствует также сравнение результатов измерений, полученных разными экспериментаторами.

Измерить физическую величину это значит найти доверительный интервал , в котором лежит ее истинное значение https://pandia.ru/text/78/464/images/image005_14.png" width="16 height=21" height="21">..png" width="21" height="17 src=">.png" width="31" height="21 src="> случаев истинное значение измеряемой величины попадет в доверительный интервал. Величина выражается или в долях единицы, или в процентах. При большинстве измерений ограничиваются доверительной вероятностью 0,9 или 0,95. Иногда, когда требуется чрезвычайно высокая степень надежности, задают доверительную вероятность 0,999. Наряду с доверительной вероятностью часто пользуются уровнем значимости , который задает вероятность того, истинное значение не попадает в доверительный интервал. Результат измерения представляют в виде

где https://pandia.ru/text/78/464/images/image012_8.png" width="23" height="19"> – абсолютная погрешность. Таким образом, границы интервала , https://pandia.ru/text/78/464/images/image005_14.png" width="16" height="21"> лежит в пределах этого интервала.

Для того чтобы найти и , выполняют серию однократных измерений. Рассмотрим конкретный пример..png" width="71" height="23 src=">; ; https://pandia.ru/text/78/464/images/image019_5.png" width="72" height="23">.png" width="72" height="24">. Значения могут и повторяться, как значения и https://pandia.ru/text/78/464/images/image024_4.png" width="48 height=15" height="15">.png" width="52" height="21">. Соответственно уровень значимости .

Среднее значение измеряемой величины

Измерительный прибор также вносит свой вклад в погрешность измерений. Эта погрешность обусловлена конструкцией прибора (трением в оси стрелочного прибора, округлением, производимым цифровым или дискретным стрелочным прибором и пр.). По своей природе это систематическая ошибка, но ни величина, ни знак ее для данного конкретного прибора неизвестны. Приборную погрешность оценивают в процессе испытаний большой серии однотипных приборов.

Нормированный ряд классов точности измерительных приборов включает такие значения: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0. Класс точности прибора равен выраженной в процентах относительной ошибке прибора по отношению к полному диапазону шкалы. Паспортная погрешность прибора

Классификацию видов измерений можно проводить по различным классификационным признакам, к которым можно отнести следующее:

Способ нахождения численного значения физической величины,

Число наблюдений,

Характер зависимости измеряемой величины от времени,

Число измеряемых мгновенных значений в заданном интервале времени,

Условия, определяющие точность результатов,

Способ выражения результатов измерения.

По способунахождения численного значения физической величины измерения подразделяются на следующие виды: прямые, косвенные , совокупные и совместные.

Прямым измерением называют измерение, при котором значение измеряемой величины находят непосредственно из опытных данных. Прямые измерения выполняются при помощи средств, предназначенных для измерения данных величин. Числовое значение измеряемой величины отсчитывается непосредственно по показанию измерительного прибора. Примеры прямых измерений: измерение тока ампер­метром; напряжения – вольтметром; массы - на рычажных весах и др.

Зависимость между измеряемой величиной X и результатом измерения Y при прямом измерении характеризуется уравнением:

т.е. значение измеряемой величины принимается равным получен­ному результату.

К сожалению, прямое измерение не всегда можно провести. Иногда нет под рукой соответствующего измерительного прибора или он неудовлетворителен по точности, или даже вообще ещё не создан. В этом случае приходится прибегать к косвенному измере­нию.

Косвенными измерениями называют та­кие измерения, при которых значение искомой величины находят на основании известной зависимости между этой величиной и величи­нами, подвергаемыми прямым измерениям.

При косвенных измерениях измеряют не собственно определяемую величину, а другие величины, функционально с ней связанные. Значение измеряемой косвенным путем величины X находят вычислением по фор-муле

X = F (Y 1 , Y 2 , … ,Y n ),

где Y 1 , Y 2 , … Y n – значения величин, полученных путем прямых измерений.

Примером косвенного измерения является определение электрического сопротивления с помощью амперметра и вольтметра. Здесь путем прямых измерений находят значения падения напряжения U на сопротивлении R и ток I через него, а искомое сопротивление R находят по формуле

R = U/I .

Операцию вычисления измеряемой величины может производить как человек, так и вычислительное устройство, помещенное в прибор.

Прямые и косвенные измерения в настоящее время широко использу­ются в практике и являются наиболее распространенными видами измерений.

Совокупные измерения – это производи­мые одновременно измерения нескольких одноименных величин, при которых искомые значения величин находят решением системы уравнений, получаемых при прямых измерениях различных сочетаний этих величин.

Например, для определения значений сопротивлений резисторов, соединенных треугольником (рис. 3.1), измеряют сопротивления на каждой паре вершин треугольника и получают систему уравнений:


Из решения этой системы уравнений получают значения сопротивлений

, , ,

Совместные измерения – это производимые одновременно измерения двух или нескольких не одноименных величин X 1 , X 2 ,…,X n , значения которых находят решением системы уравнений

F i (X 1 , X 2 , … ,X n ; Y i1 , Y i2 , … ,Y im ) = 0,

где i = 1, 2, …, m > n; Y i1 , Y i2 , … ,Y im – результаты прямых или косвенных измерений; X 1 , X 2 , … ,X n – значения искомых величин.

Например, индуктивность катушки

L = L 0 × (1 + w 2 × C× L 0 ),

где L 0 – индуктивность при частоте w =2× p × f стремящейся к нулю; С – межвитковая емкость. Значения L 0 и С нельзя найти прямыми или косвенными измерениями. Поэтому в простейшем случае измеряют L 1 при w 1 , а затем L 2 при w 2 и составляют систему уравнений:

L 1 = L 0 × (1 + w 1 2 × C× L 0 );

L 2 = L 0 × (1 + w 2 2 × C× L 0 ),

решая которую, находят искомые значения индуктивности L 0 и емкости С

; .

Совокупные и совместные измерения – это обобщение косвен­ных измерений на случай нескольких величин.

Для повышения точности совокупных и совместных измерений обеспечивают условие m ³ n, т.е. число уравнений должно быть больше или равно числу искомых величин. Получающуюся при этом несовместную систему уравнений решают методом наименьших квадратов.

По числу наблюдений измерения подразделяются:

На обыкновенные измерения – измерения, выполняемые с однократным наблюдением;

- статистические измерения – измерения с многократными на-блюдениями.

Наблюдение при измерении – экспериментальная операция, выполняемая в процессе измерений, в резуль­тате которой получают одно значение из группы значе­ний величин, подлежащих совместной обработке для по­лучения результатов измерений.

Результат наблюдения – результат величины, полу­чаемый при отдельном наблюдении.

По характеру зависимости измеряе­мой величины от времени измерения разделяются:

На статические , при которых измеряемая величина оста­ется постоянной во времени в процессе измерения;

- динамические , при которых измеряемая величина изменяется в процессе измерения и является непостоянной во вре­мени.

При динамических измерениях для получения результата измерения необходимо учитывать это изменение. А для оценки точности результатов динамических измерений необходимо знание динамических свойств средств измерений.

По числу измеряемых мгновенных значений в заданном интервале времениизмерения подразделяются на дискретные и непрерывные (аналоговые).

Дискретные измерения – измерения, при которых на заданном интервале времени число измеряемых мгновенных значений конечно.

Непрерывные (аналоговые) измерения – измерения, при которых на заданном интервале времени число измеряемых мгновенных значений бесконечно.

По условиям, определяющим точность результатов , измерения бывают:

- максимально воз­можной точности , достигаемой при существующем уров­не техники;

- контрольно-поверочные , погрешность кото­рых не должна превышать некоторое заданное значение;

- технические измерения , в которых погрешность результата опреде­ляется характеристиками средств измерений.

По способу выражения результатов различают абсолютные и относительные измерения.

Абсолютные измерения – измерения, основанные на прямых измерениях одной или нескольких основных величин и (или) использовании значений физических констант.

Относительные измерения – измерения отношения величины к одноименной величине, играющей роль единицы, или измерения величины по отношению к одноименной величине, принимаемой за исходную.

Методы измерений и их классификация

Все измерения могут производиться различными методами. Различают два основных метода измерений: метод непосредственной оценки и методы сравнения c мерой.

Метод непосредственной оценки характеризуется тем, что значение измеряемой величины опреде­ляется непосредственно по отсчетному устройству измерительного прибора, заранее градуированного в единицах измеряемой величины. Этот метод является наиболее простым и поэтому широко применяется при измерении различных величин, например: измерение веса тела на пружинных весах, силы электрического тока стрелочным ампермет­ром, разности фаз цифровым фазометром и т.д.

Функциональная схема измерения методом непосредственной оценки приведена на рис. 3.2.

Мерой в приборах непосредственной оценки слу­жат деления шкалы отсчетного устройства. Они поставлены не произвольно, а на основании градуировки прибора. Таким образом, деления шкалы отсчетного устройс­тва являются как бы заменителем (²отпечатком²) значения реаль­ной физической величины и поэтому могут быть использованы не­посредственно для нахождения значений измеряемых прибором величин. Следовательно, все приборы непосредственной оценки факти­чески реализуют принцип сравнения с физическими величинами. Но это сравнение разновременное и осуществляется опосредованно , с помощью промежуточного средства – делений шкалы отсчетного устройства.

Методы сравнения с мерой методы измерений, в которых измеряемую величину сравнивают с величиной, воспроизводимой мерой. Эти методы по сравнению с методом непосредственной оценки более точны, но немного сложнее. Группа методов сравнения с мерой включает в себя следующие методы: метод противопоставления, нулевой метод, дифференциальный метод, метод совпадения и метод замещения.

Определяющим признаком методов сравнения является то, что в процессе измерения происходит сравнение двух однородных величин – известной (воспроизводимой мерой) и измеряемой. При измерениях методами сравнения используются реальные физи­ческие меры, а не их ²отпечатки².

Сравнение может быть одновременным и разновременным. При одновременном сравнении мера и измеряемая величина воздействуют на измерительный при­бор одновременно, а при разновременном – воздействие измеряемой величины и меры на измерительный прибор раз­несено во времени. Кроме того, сравнение может быть непосредственным и опосредован­ным .

При непосредственном сравнении измеряемая величина и мера непосредст­венно воздействуют на устройство сравнения, а при опосредован­ном сравнении – через другие величины, однозначно связанные с известной и измеряемой величинами.

Одновременное сравнение осуществляется обычно методами противопоставления , нулевым, дифференциа­льным и совпадения , а разновременное - методом замещения .

ЛЕКЦИЯ 4

МЕТОДЫ ИЗМЕРЕНИЙ

РМГ 29 -99 вводит понятие область измерений - совокупность измерений физических величин, свойственных какой-либо области науки или техники и выделяющихся своей спецификой. В соответствии с определением выделяют ряд областей измерений: механические измерения, магнитные, акустические, измерения ионизирующих излучений и др.

Видом измерений названа часть области измерений, имеющая свои особенности и отличающаяся однородностью измеряемых величин. Как примеры видов измерений приведены измерения электрического сопротивления, электродвижущей силы, электрического напряжения, магнитной индукции, относящиеся к области электрических и магнитных измерений. Дополнительно выделеныподвиды измерений - часть вида измерений, выделяющаяся особенностями измерений однородной величины (по диапазону, по размеру величины и др.) и примеры подвидов (измерения больших длин, имеющих порядок десятков, сотен, тысяч километров или измерения сверхмалых длин — толщин пленок как подвиды измерений длины).

Такое истолкование видов и особенно подвидов измерений малоэффективно и не очень корректно - подвиды измерений фактически не определены, и неудачные примеры это подтверждают.

Более широкая трактовка видов измерений (с использованием различных оснований классификации) позволяет отнести к ним также приведенные в том же документе, но не сформированные в классификационные группы измерения, характеризуемые следующими альтернативными парами терминов:

  • прямые и косвенные измерения,
  • совокупные и совместные измерения,
  • абсолютные и относительные измерения,
  • однократные и многократные измерения,
  • статические и динамические измерения,
  • равноточные и неравноточные измерения.

Прямые и косвенные измерения различают в зависимости от способа получения результата измерений. Прямое измерение - измерение, при котором искомое значение физической величины получают непосредственно. В примечании отмечено, что при строгом подходе существуют только прямые измерения и предлагается применять термин прямой метод измерений. Это предложение нельзя назвать удачным (см. далее классификацию методов измерений). Как примеры прямых измерений приведены: измерение длины детали микрометром, силы тока амперметром, массы на весах.

В ходе прямых измерений искомое значение величины определяют непосредственно по устройству отображения измерительной информации применяемого средства измерений. Формально без учета погрешности измерения они могут быть описаны выражением

где Q - измеряемая величина,

х - результат измерения.

Косвенное измерение - определение искомого значения физической величины на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной. Далее сказано, что вместо термина косвенное измерение часто применяют термин косвенный метод измерений. Этот вариант предпочтительно не использовать как явно неудачный.

При косвенных измерениях искомое значение величины рассчитывают на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. Формальная запись такого измерения

Q = F (X, Y, Z,…),

где X, Y, Z,… - результаты прямых измерений.

Принципиальной особенностью косвенных измерений является необходимость обработки (преобразования) результатов вне прибора (на бумаге, с помощью калькулятора или компьютера), в противоположность прямым измерениям, при которых прибор выдает готовый результат. Классическими примерами косвенных измерений можно считать нахождение значения угла треугольника по измеренным длинам сторон, определение площади треугольника или другой геометрической фигуры и т.п. Один из наиболее часто встречающихся случаев применения косвенных измерений- определение плотности материала твердого тела. Например, плотность ρ тела цилиндрической формы определяют по результатам прямых измерений массы т, высоты h и диаметра цилиндра d, связанных с плотностью уравнением

ρ = т/0,25π d2 h

С различением прямых и косвенных измерений связаны дискуссии и ряд недоразумений. Например, споры о том, являются ли косвенными измерения радиального биения (b = Rmax - Rmin) или высоты детали при настройке прибора на отличное от нулевого деление. Некоторые метрологи отказываются от признания косвенных измерений как таковых ("существуют только прямые измерения, а все остальное- математическая обработка результатов"). Можно предложить компромиссное решение: признать за косвенными измерениями право на существование, поскольку специфика математической обработки результатов таких измерений и оценки их погрешностей никем не оспаривается.

Прямые и косвенные измерения характеризуют измерения некоторой конкретной одиночной физической величины. Измерение любого множества физических величин классифицируется в соответствии с однородностью (или неоднородностью) измеряемых величин. На этом и построено различение совокупных и совместных измерений.

Совокупные измерения - проводимые одновременно измерения нескольких одноименных величин, при которых искомые значения величин определяют путем решения системы уравнений, получаемых при измерениях этих величин в различных сочетаниях.Приведенный пример - определение значений массы отдельных гирь набора по известному значению массы одной из гирь и по результатам измерений (сравнений) масс различных сочетаний гирь подтверждает, что определению соответствуют не измерения, а специальные исследования, направленные на поиск погрешностей ряда мер массы.

Реально к совокупным измерениям следует отнести те, при которых осуществляется измерение нескольких одноименных величин, например, длинL1, L2, L3 и т.д. Подобные измерения выполняют на специальных устройствах (измерительных установках) для одновременного измерения ряда геометрических параметров валов.

Совместные измерения - проводимые одновременно измерения двух или нескольких неодноименных величин для определения зависимости между ними. В качестве примера можно рассмотреть одновременные измерения длин и температур для нахождения температурного коэффициента линейного расширения. В более узкой трактовке совместные измерения подразумевают измерение нескольких неодноименных величин (X, Y, Z и т.д.). Примерами таких измерений могут быть комплексные измерения электрических, силовых и термодинамических параметров электродвигателя, а также измерения параметров движения и состояния транспортного средства (скорость, запас горючего, температура двигателя и др.).

Для отображения результатов, получаемых при измерениях, могут быть использованы разные оценочные шкалы, в том числе градуированные в единицах измеряемой физической величины, либо в некоторых относительных единицах, в том числе и в неименованных. В соответствии с этим принято различатьабсолютные и относительные измерения.

Абсолютное измерение - измерение, основанное на прямых измерениях одной или нескольких основных величин и (или) использовании значений физических констант. Это крайне неудачное определение сопровождается примером (измерение силы F = mg основано на измерении основной величины — массы т и использовании физической постоянной g в точке измерения массы), который подтверждает нелепость предложенной трактовки. В примечании сказано, что понятие абсолютное измерение применяется как противоположное понятию относительное измерение и рассматривается как измерение величины в ее единицах, и что именно такое понимание находит все большее и большее применение в метрологии. Именно эту трактовку имеет смысл использовать для данных альтернативных видов измерений.

Относительное измерение - измерение отношения величины к одноименной величине, играющей роль единицы, или измерение изменения величины по отношению к одноименной величине, принимаемой за исходную.

Пример — Измерение активности радионуклида в источнике по отношению к активности радионуклида в однотипном источнике, аттестованном в качестве эталонной меры активности.

По числу повторных измерений одной и той же величины различают однократные и многократные измерения. Однократное измерение - измерение, выполненное один раз.

Примечание — Во многих случаях на практике выполняются именно однократные измерения. Например, измерение конкретного момента времени по часам обычно производится один раз. (Пример не выдерживает критики, поскольку повторные измерения одного отрезка времени невозможны).

Многократное измерение - измерение физической величины одного и того же размера, результат которого получен из нескольких следующих друг за другом измерений, т. е. состоящее из ряда однократных измерений.

В зависимости от поставленной цели число повторных измерений может колебаться в широких пределах (от двух измерений до нескольких десятков и даже сотен). Многократные измерения проводят или для страховки от грубых погрешностей (в таком случае достаточно трех-пяти измерений) или для последующей математической обработки результатов (часто более пятнадцати измерений с последующими расчетами средних значений, статистической оценкой отклонений и др.). Многократные измерения называют также«измерения с многократными наблюдениями».

Статическое измерение - измерение физической величины, принимаемой в соответствии с конкретной измерительной задачей за неизменную на протяжении времени измерения. Приведенные примеры (измерение длины детали при нормальной температуре и измерение размеров земельного участка) скорее запутывают, чем проясняют ситуацию.

Динамическое измерение - измерение изменяющейся по размеру физической величины.

Примечания

1 Терминоэлемент «динамическое» относится к измеряемой величине.

2 Строго говоря, все физические величины подвержены тем или иным изменениям во времени. В этом убеждает применение все более и более чувствительных средств измерений, которые дают возможность обнаруживать изменение величин, ранее считавшихся постоянными, поэтому разделение измерений на динамические и статические является условным.

Трактовка статических и динамических измерений как измерений постоянной либо переменной физических величин примитивна и в философском плане всегда неоднозначна ("все течет, все меняется"). "Неизменных" физических величин, кроме физических констант в практике измерений почти нет, все величины различаются только в соответствии со скоростью изменения.

Вместо абстрактных рассуждений желательны определения, обусловленные прагматическим подходом. Статические и динамические измерения наиболее логично рассматривать в зависимости от режима получения средством измерения входного сигнала измерительной информации. При измерении встатическом режиме (или квазистатическом режиме) скорость изменения входного сигнала несоизмеримо ниже скорости его преобразования в измерительной цепи, и результаты фиксируются без динамических искажений.

При измерении в динамическом режиме появляются дополнительные динамические погрешности, связанные со слишком быстрым изменением либо самой измеряемой физической величины, либо входного сигнала измерительной информации, поступающего от постоянной измеряемой величины. Например, измерение диаметров тел качения (постоянных физических величин) в подшипниковой промышленности осуществляется с использованием контрольно-сортировочных автоматов. При этом скорость изменения измерительной информации на входе может оказаться соизмеримой со скоростью измерительных преобразований в цепи прибора. Измерение температуры с помощью ртутного термометра несоизмеримо медленнее измерений электронными термометрами, следовательно, применяемые средства измерений могут в значительной степени определить режим измерений.

По реализованной точности и по степени рассеяния результатов при многократном повторении измерений одной и той же величины различают равноточные и неравноточные, а также на равнорассеянные и неравнорассеянные измерения.

Равноточные измерения - ряд измерений какой-либо величины, выполненных одинаковыми по точности средствами измерений в одних и тех же условиях с одинаковой тщательностью.

Неравноточные измерения - ряд измерений какой-либо величины, выполненных различающимися по точности средствами измерений и (или) в разных условиях.

В примечаниях к двум последним определениям предлагается до обработки ряда измерений, убедиться в том, что все измерения являются равноточными, а неравноточные измерения обрабатывать с учетом веса отдельных измерений, входящих в ряд.

Оценка равноточности и неравноточности, а также равнорассеянности и неравнорассеянности результатов измерений зависит от выбранных значений предельных мер расхождения точности или оценок рассеяния. Допустимые расхождения оценок устанавливают в зависимости от задачи измерения.Равноточными называют серии измерений 1 и 2, для которых оценки погрешностей Δi и Δj можно считать практически одинаковыми

а к неравноточным относят измерения с различающимися погрешностями

Измерения в двух сериях считают равнорассеянными (Δ1 ≈ Δ2), или при (Δ1 ≠ Δ2)

неравнорассеянными (в зависимости от совпадения или различия оценок случайных составляющих погрешностей измерений сравниваемых серий 1 и 2).

В зависимости от планируемой точности измерения делят на технические и метрологические. К техническим следует относить те измерения, которые выполняют с заранее установленной точностью. Иными словами, при технических измерениях погрешность измерения Δ не должна превышать заранее заданного значения [Δ]:

где [Δ] - допустимая погрешность измерения.

Именно такие измерения наиболее часто осуществляются в производстве, откуда и взято их наименование.

Метрологические измерения выполняют с максимально достижимой точностью, добиваясь минимальной (при имеющихся ограничениях) погрешности измерения Δ, что можно записать как

Такие измерения имеют место при эталонировании единиц, при выполнении уникальных исследований.

В тех случаях, когда точность результата измерений не имеет принципиального значения, а цель измерений состоит в приблизительной оценке неизвестной физической величины прибегают к ориентировочным измерениям, погрешность которых может колебаться в достаточно широких пределах, поскольку любая реализуемая в процессе измерений погрешностьΔ, принимается за допустимую [Δ]

Общность метрологического подхода ко всем этим видам измерений состоит в том, что при любых измерениях определяют значения Δ реализуемых погрешностей, без чего невозможна достоверная оценка результатов.

error: Content is protected !!